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About the linear complexity of sequences over the
finite field obtained by inverse Gray mapping from

binary sequences
Vladimir Edemskiy, Andrey Ivanov

Abstract—We consider the sequences over the finite field of
four elements obtained by inverse Gray mapping from a pair
of binary sequences. We derive the linear complexity and the
minimal polynomial of sequences constructed from Legendre
sequences, Hall’s sextic sequences and twin-prime sequences
using the technique proposed by Tang, Ding, Lim, Kim et al.

Index Terms—Binary sequences, Gray map, linear complexity,
finite field

I. INTRODUCTION

THE autocorrelation is a measure of pseudo-random se-
quence significant for their application in wireless com-

munications, cryptography and radar applications and so on
[3], [9]. In such applications, the absolute value of the out-
of-phase autocorrelation of a pseudo-random sequence is ex-
pected to be as small as possible. The linear complexity is
another important parameter of pseudo-random sequence for
cryptographic applications [3] (one more approach see in [1],
[2]).

Tang, Ding, Lim, Kim et al. constructed new balanced
quaternary sequences with optimal autocorrelation values [12],
[16], [17] using the interval structure and the inverse Gray
map. In the same way, we can build the sequences over the
finite field of four elements from a pair of binary sequences.

In this paper we investigate the linear complexity of above
mentioned sequences over the finite field of four elements.
We derive the linear complexity and the minimal polynomial
of sequences constructed from Legendre sequences, Hall’s
sextic sequences and twin-prime sequences. Binary Legendre
sequences or Hall’s sextic sequences and twin-prime sequences
are well-known classes of sequences with a good autocorrela-
tion function. For the application of sequences over the finite
field, see [14], for instance.

II. PRELIMINARIES

Let c = c0, . . . , cM−1 and d = d0, . . . , dM−1 be binary
sequences of period M. The well-known Gray mapping φ :
Z4 → Z2 × Z2 is defined as

φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0).
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Let F4 = {0, 1, µ, µ+ 1} be a finite field of four elements.
If we view F4 as a vector space over F2 with the basis µ, 1,
then we can define a sequence v by inverse Gray map as

vi =


0, if (ci, di) = (0, 0),

1, if (ci, di) = (0, 1),

µ+ 1, if (ci, di) = (1, 1),

µ, if (ci, di) = (1, 0).

(1)

So, we can obtain a sequence over the finite field of four
elements from a pair of binary sequences by the inverse Gray
mapping. Next, we will use the notation v = [c, d] for the
sequence v obtained from a pair of sequences c, d by (1).

The linear complexity (or rank) of a sequence v over the
finite field F4 is defined to be the smallest positive integer LC
for which there exist constants c1, ..., cLC , ci ∈ F4 such that

−vm = c1vm−1+c2vm−2+· · ·+cLCvm−LC for all m ≥ LC.
The polynomial m(x) = xLC+c1x

LC−1+ · · ·+cLC is called
the minimal polynomial of v. The linear complexity also may
be defined as the length of the shortest linear feedback shift
register that is capable of generating the sequence. Knowledge
of just 2LC consecutive digits of the sequence is sufficient to
enable the remainder of the sequence to be constructed. Thus,
it is reasonable to suggest that ’good’ sequences have the linear
complexity greater than a half of a period LC > M/2 (where
M denotes the period of the sequence) [3].

The minimal polynomial m(x) and the linear complexity
LC of v are given by the following equations [3]:

m(x) = (xM − 1)/ gcd
(
xM − 1, sv(x)

)
,

LC =M − deg gcd
(
xM − 1, sv(x)

)
, (2)

where sv(x) is the generating polynomial of v. Thus, sv (x) =∑M−1
i=0 vix

i. So, we must define the greatest common divisor
of two polynomials.

Lemma 1: [8] Let v be defined by (1), i.e. v = [c, d]. Then

sv(x) = µsc(x) + sd(x),

where sc (x) =
∑M−1

i=0 cix
i and sd (x) =

∑M−1
i=0 dix

i.
We see that the statement of Lemma 1 follows from (1).

In conclusion of the section we consider a simple example
of using Lemma 1.

Example. Let M = p where p is a prime, p ≡ 3(mod 4).
Well-known Legendre sequences are defined as

lj =

{
0, if j mod p = 0,(

j
p

)
, if j mod p 6= 0,
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where
(

j
p

)
is Legendre symbol. Here and hereafter a mod p

denotes the least nonnegative integer that is congruent to a
modulo p.

Let QRp and NQRp denote all the nonzero squares and
non-squares in Zp, respectively. Let α be a primitive p-th root
of unity in the extension of the field F4 (α = µ for p = 3). It is
known to exist by Galois theory. Then, by (2) and by Lemma 1,
to compute the minimal polynomial and the linear complexity
of v it is sufficient to know the values of polynomial sl(x) in
the set {αj , j = 0, 1, . . . , p− 1}.

The linear complexity of Legendre sequences was studied
in [4]. In particular, it was shown that with an appropriate
choice of α we can assume that

sl(α
j) =

{
1, if j ∈ QRp,

0, if j ∈ NQRp

(3)

for p ≡ 7(mod 8), and

sl(α
j) =

{
µ, if j ∈ QRp,

µ+ 1, if j ∈ NQRp

(4)

for p ≡ 3(mod 8).
Let v = [l, Lml]. Here L denotes the left cyclic shift

operator, m is a integer, 0 < m < p. In this case, we have that
sLml(x) = xp−msl(x) [18]. Then, by Lemma 1 we obtain the
following relation

sv(α
j) = µsl(α

j) + α−mjsl(α
j).

Hence, by (3) and (4), sv(αj) = 0, j = 0, 1, . . . , p − 1 iff
j ∈ NQRp and p ≡ 7(mod 8). So, if v = [l, Lml] then

LC =

{
(p+ 1)/2, if p ≡ 7(mod 8),

p, if p ≡ 3(mod 8).

In the following sections we investigate the linear complex-
ity and the minimal polynomial of sequences constructed by
(1) using the technique proposed by Tang, Ding, Lim, Kim et
al.

III. THE LINEAR COMPLEXITY OF TANG AND DING
SEQUENCES

First of all, we consider the design of sequences proposed by
Tang and Ding. Let a = a0, . . . , aN−1 and b = b0, . . . , bN−1
be binary sequences of period N , N ≡ 3(mod 4). In this case
define sequences c and d as

ci =

{
ai/2, if i ≡ 0(mod2),

a(i+N)/2, if i ≡ 1(mod2).

di =

{
bi/2, if i ≡ 0(mod2),

b(i+N)/2 + 1, if i ≡ 1(mod2),
(5)

i.e. c = I(a, L1/2a) and d = I(b, L1/2b+1), where I denotes
the interleaved operator [17].

In their paper [17], Tang and Ding proved that a sequence
u : ui = φ−1(ci, di) is balanced quaternary sequence with
optimal autocorrelation values if a, b are binary sequences with
optimal autocorrelation value.

Here we investigate the linear complexity of sequences
constructed by (1) when a, b are Legendre sequences, Hall’s
sextic sequences and twin-prime sequences. The results of this
section were presented at the conference [7].

By definition of c, d we have that M = 2N and by (2) we
obtain

m(x) = (xN − 1)2/ gcd
(
(xN − 1)2, sv(x)

)
,

LC = 2N − deg gcd
(
(xN − 1)2, sv(x)

)
, (6)

So, if α is a primitive N -th root of unity in the extension of
the field F4 then, by (6), to compute the minimal polynomial
and the linear complexity of v it is sufficient to know the roots
of the polynomial sv(x) in the set {αj , j = 0, 1, . . . , N − 1}.
By Lemma 1, to compute the values sv{αj} it is sufficient
to know the values of polynomials sc(x) and sd(x) in the set
{αj , j = 0, 1, . . . , N − 1}.

The next statements were proved earlier in [15], [18].
Lemma 2: [18] (i) If c = I(a, L1/2a) then sc(x) =

(1 + xN )sa(x
2);

(ii) If d = I(b, L1/2b+ 1) then sd(x) = (1 + xN )sb(x
2) +

x(x2N − 1)/(x2 − 1).
Lemma 2 defines the relation between polynomials of se-
quences c, a and d, b, respectively. Thus, by Lemmas 1 and
2 we have

gcd(x2N−1, sv(x)) =
xN − 1

x− 1
gcd
(xN − 1

x− 1
, µsa(x

2)+sb(x
2)
)
.

(7)
So, by (6) and (7), the greatest possible value of the linear
complexity v defined by (1) is equal to N + 1.

Let w(x2) = µsa(x
2) + sb(x

2). Then, by (6) and (7), to
compute the minimal polynomial and the linear complexity of
v it is sufficient to know the roots of the polynomial w(x) in
the set {αl, l = 0, 1, . . . , N − 1}.

A. The linear complexity of sequences obtained from Legendre
sequences

The definition of Legendre sequence l was given in the
section II. Otherwise, Legendre sequences l and l

′
are defined

as

li =

{
1, if i ∈ QRp,

0, if i ∈ {0} ∪ NQRp.

or l
′

i =

{
1, if i ∈ {0} ∪QRp,

0, if i ∈ NQRp.

It is well known that Legendre sequences have optimal auto-
correlation value if p ≡ 3(mod4).

Let t(x) =
∏

j∈QRp
(x − αj). Our first contribution in this

paper is the following.
Theorem 3: Let c = I(l, L1/2l), d =

I(Lml, Lm+1/2l + 1),m = 0, . . . , p − 1, and let v = [c, d]
be defined by (1). Then:

(i) LC = (p + 3)/2 and m(x) = (x − 1)2t(x) if p ≡
7 (mod 8).

(ii) LC = p + 1 and m(x) = (xp − 1)(x − 1) if p ≡
3(mod 8) and m = 0 for p = 3.
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(iii) LC = 3 and m(x) = (x − 1)2(x − (µ + 1)m) if p =
3,m = 1, 2.

Proof: If b = Lml then sb(x2) = x2p−2msl(x
2). Hence,

in this case w(x2) = µsa(x
2) + sb(x

2) = µsl(x
2)
(
1 +

µ−1x2p−2m
)

and 1 + µ−1α−2mj 6= 0, j = 1, . . . , p − 1 for
p 6= 3.

We consider three cases.
(i) Let p ≡ 7(mod 8). Then 2 ∈ QRp [11] and by (3) we

have that v(α2j) = 0, j = 1, . . . , p− 1 iff j ∈ NQRp. So,

gcd(x2N − 1, sv(x)) =
xN − 1

x− 1

∏
j∈NQRp

(x− αj).

By (2), m(x) = (x− 1)2t(x). Hence, LC = (p+ 3)/2. This
completes the proof of the first case.

(ii) Let p ≡ 3(mod 8) and p 6= 3. Then v(α2j) 6= 0, j =
1, . . . , p− 1 by (4). We see that in this case the statement of
Theorem 3 follows from (6) and (7).

(iii) We can make sure that Theorem 3 holds for p = 3 by
computing the value 1 + µ−4mj−1,m = 0, 1, 2; j = 1, 2.
Theorem 3 defines the linear complexity and the minimal
polynomial of sequences obtained from Legendre sequences.

Remark 4: For cryptographic applications one needs se-
quences with high linear complexity, i.e LC > N . In the
case of Tang and Ding sequences the last inequality means
that LC = p + 1. Then always m(x) = (xp − 1)(x − 1) by
(6) and (7). Later we will omit the expression for m(x).

Theorem 5: Let c = I(l, L1/2l), d =
I(Lml

′
, Lm+1/2l

′
+ 1),m = 0, . . . , p − 1, and let v

be defined by (1). Then:
(i) LC = (p + 3)/2 if p ≡ 3(mod 8) and m = 0 or p =

3,m = 2.
(ii) LC = p + 1 if p ≡ 7(mod 8) or p ≡ 3(mod 8) and

m 6= 0 for p 6= 3 or m = 1 for p = 3.
We can prove Theorem 5 similarly as Theorem 3. Theorem 5
also defines the linear complexity and the minimal polynomial
of sequences obtained from Legendre sequences of different
design.

The results of computing the linear complexity by
Berlekamp-Massey algorithm when p = 3, 7, 11, 19, 23, . . .
confirm Theorems 3 and 5.

B. The linear complexity of sequences obtained from Legendre
and Hall’s sextic sequences or Hall’s sextic sequences

Denote by Hk, k = 0, . . . , 5 cyclotomic classes of order 6
modulo p, i.e. Hk = {gk+6t mod p, t = 0, . . . , R − 1}. Let
p = A2 + 27 = 6R+ 1 be a prime, A ≡ 1(mod 3) and let g
be a primitive root modulo p. Let g be (and, always can be)
selected such that 3 ∈ H1 [10].

Let D = H0 ∪H1 ∪H3 be a Hall difference set [10], and
let h be a Hall’s sextic sequence, i.e.

hi =

{
1, if j mod p ∈ D,
0, else.

Put, by definition Dk = gkD, k = 0, . . . , 5. Denote by h(k)

the characteristic sequence Dk, i.e. Dk is the support of the

sequence h(k). Then h(k) has optimal autocorrelation value
{−1}.

The polynomial sh(x) was studied in [13] and in [6]. It is
easy to verify that sh(αj) = sh(α

n) if j and n belong to the
same cyclotomic class and sh(k)(αj) = sh(α

jgk

).
Lemma 6: [6], [13] Let h be a Hall’s sextic sequence. Then

there exist the primitive p-th root α of unity such that:
(i)

sh(α
j) =

{
1, if j ∈ H0,

0, if j ∈ H1 ∪ · · · ∪H5.
(8)

for p ≡ 7(mod 8);
(ii)

sh(α
j) =


1, if j ∈ H0 ∪H1 ∪H3 ∪H4,

µ, if j ∈ H2,

µ+ 1, if j ∈ H5,

(9)

for p ≡ 3(mod 8).
Proof: The first statement is proved in [13].

For p ≡ 3(mod 8) the values
∑

f∈Hk
αf , k = 0, 1, . . . , 5

were computed in [6]. Using this, we obtain the statement of
Lemma 6.
The linear complexity of sequences over F4 obtained from
Legendre and Hall’s sextic sequences or Hall’s sextic se-
quences we investigate below.

Theorem 7: Let c = I(l, L1/2l), d =
I(Lmh(k), Lm+1/2h(k) + 1),m = 0, . . . , p − 1, and let
v be defined by (1). Then:

(i) LC = p+ 1 if p ≡ 3(mod 8) and m 6= 0.
(ii) LC = (p + 3)/2 if m = 0, p ≡ 3(mod 8) and k =

1, 3, 5 or p ≡ 7(mod 8) and k = 0, 2, 4.
(iii) LC = 2(p + 2)/3 if m = 0, p ≡ 3(mod 8) and k =

0, 2, 4 or p ≡ 7(mod 8) and k = 1, 3, 5.
Proof: Under the conditions of Theorem 7 we have

w(α2j) = µsl(α
2j) + α−4mjsh(α

2jgk

). (10)

Thus, if m 6= 0 and p ≡ 3(mod 8) then w(α2j) 6= 0, j =
1, . . . , p−1 by (4) and (9). Hence, from (7) and (6) we obtain
that LC = p+ 1.

Let m = 0 and p ≡ 3(mod 8). The values sl(αj) and
sh(α

j) in this case are given by (3) and (8). After summing
over (10), we have

|{j : w(α2j) = 0}| =

{
(p− 1)/2, if k = 1, 3, 5,

(p− 1)/3, if k = 0, 2, 4

for m = 0 and p ≡ 3(mod 8).

Similarly, we have

|{j : w(α2j) = 0}| =

{
(p− 1)/2, if k = 0, 2, 4,

(p− 1)/3, if k = 1, 3, 5

for m = 0, . . . , N − 1 and p ≡ 7(mod 8).

We see that the statement of Theorem 7 follows from (6).
By theorem 7, the sequence has high linear complexity only
in the first case.
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Theorem 8: Let c = I(h, L1/2h), d =
I(Lmh(k), Lm+1/2h(k) + 1),m = 0, . . . , p − 1, and let
v be defined by (1). Then:

(i) LC = p + 1 if p ≡ 3(mod 8) and m 6= 0 or p ≡
3(mod 8) and m = k = 0.

(ii) LC = 2(p + 2)/3 if m = 0, p ≡ 3(mod 8) and k =
1, 2, 4, 5.

(iii) LC = (5p+7)/6 if m = 0, p ≡ 3(mod 8) and k = 3.
(iv) LC = (p+ 5)/3 if p ≡ 7(mod 8) and k = 1, . . . , 5.
(v) LC = (p+ 11)/6 if p ≡ 3(mod 8) and k = 0.

Theorem 8 may be proved similarly as Theorem 7. Theorems 7
and 8 define the linear complexity and the minimal polynomial
of sequences obtained from Legendre sequences and Hall’s
sextic sequences or Hall’s sextic sequences.

The results of computing the linear complexity by
Berlekamp-Massey algorithm when p = 31, 43, 127, 283, ...
confirm Theorem 7 and 8.

C. The linear complexity of sequences obtained from twin-
prime sequences

Let p, q be odd primes, and let a be a binary sequence
defined as

aj =


0, if j mod q = 0,

1, if j mod p = 0, j 6= 0,(
1−

(
j
p

)(
j
q

))
, otherwise j,

for 0 ≤ j ≤ pq − 1.

If q = p+ 2 (for example p = 3, q = 5, p = 11, q = 13, ...)
then a is called a twin-prime sequence and a has an optimal
autocorrelation.

Let a be a twin-prime sequence with period N = p(p+2),
both p and p + 2 are primes, and let b = Lma. In this case
we have w(x2) = µsa(x

2) + x2N−2msa(x
2) by Lemma 2

and w(α2j) = µsa(α
2j)
(
1 + α−2mjµ−1

)
, at the same time

1 + α−2mjµ−1 6= 0 for j = 1, . . . , N − 1 and p 6= 3. Thus,
by (6) for p 6= 3 we have

gcd(x2N − 1, sv(x)) =
xN − 1

x− 1
gcd
(xN − 1

x− 1
, sa(x

2)
)
. (11)

The linear complexity of twin-prime sequences and the values
sa(α

j) were computed in [5]. In particular, from [5] and (11)
we obtain the next statement.

Lemma 9: Let v be defined by (1), where c = I(a, L1/2a),
d = I(Lma, L1/2+ma + 1) and a be a twin-prime sequence.
Then LC = p(p+2)+ 1 iff p ≡ 1(mod 8) or p ≡ −3 (mod
8).
For example, the conditions of Lemma 9 are satisfied for p =
17, 29.

IV. THE LINEAR COMPLEXITY OF LIM ET AL. SEQUENCES

Another approach to the sequence design was suggested in
[16]. In their paper [16], Lim et al. proved that if a, b are

binary sequences with optimal autocorrelation value and

ei =

{
ai, if i ≡ 0(mod2),

ai, if i ≡ 1(mod2).

fi =

{
bi, if i ≡ 0(mod2),

bi + 1, if i ≡ 1(mod2),
(12)

then a sequence u : ui = φ−1(ei, fi) is a balanced quaternary
sequence with period 2N and optimal autocorrelation values.

Lemma 10: Let e, f be defined by (12). Then:
(i) se(x) = (1 + xN )sa(x);
(ii) sf (x) = (1 + xN )sb(x) + x(x2N − 1)/(x2 − 1).

Proof: From our definition it follows that se(x) =∑N−1
u=0 a2ux

2u+
∑N−1

u=0 a2u+1x
2u+1 or se(x) =

∑2N−1
i=0 aix

i.
Since N is a period of a, we obtain se(x) = (1 + xN )sa(x).
The second statement of Lemma 10 we prove similarly.
Lemma 10 defines the relation between polynomials of se-
quences e, f and a, b.

Lemma 11: Let e, f be defined by (12), and let z = [e, f ].
Then

gcd(x2N−1, sz(x)) =
xN − 1

x− 1
gcd
(xN − 1

x− 1
, µsa(x)+sb(x)

)
.

(13)
Proof: By Lemmas 1 and 10 we have sz(x) = µse(x) +

sf (x) or sz(x) = (1 + xN )(µsa(x) + sb(x)) + x(x2N −
1)/(x2 − 1). The statement of Lemma 11 follows from the
latest equality.

In investigating the linear complexity of sequences con-
structed by design proposed by Lim et al. we consider only
the parameters of sequences with high linear complexity. Then
we can obtain the next assertions.

Theorem 12: Let e, f be defined by (12) and let z = [e, f ].
Then:

(i) LC = p+1 and m(x) = (xp− 1)(x− 1) for a = l, b =
Lml,m = 0, 1, . . . , p − 1 iff p ≡ 3(mod 8) and m = 0 for
p = 3;

(ii) LC = p+1 and m(x) = (xp−1)(x−1) for a = l, b =
Lml

′
,m = 0, . . . , p − 1 iff p ≡ 7(mod 8) or p ≡ 3(mod 8)

and m 6= 0 for p 6= 3 or m = 1 for p = 3;
(iii) LC = p + 1 and m(x) = (xp − 1)(x − 1) for a = l,

b = Lmh(k)),m = 0, . . . , p − 1, iff p ≡ 3(mod 8) and m 6=
0;

(iv) LC = p + 1 and m(x) = (xp − 1)(x − 1) for a = h,
b = Lmh(k),m = 0, . . . , p− 1, iff p ≡ 3(mod 8) and m 6= 0
or p ≡ 3(mod 8) and m = k = 0;

(v) LC = p + 1 and m(x) = (xp − 1)(x − 1) when a is
a twin-prime sequence and b = Lma iff p ≡ 1(mod 8) or
p ≡ −3 (mod 8).

Proof: We consider the first case. By Lemma 11, if se-
quences c, d and e, f are defined by (5) and (12), respectively,
for the same pair of binary sequences a = l, b = Lml then

gcd(x2N − 1, sv(x)) = gcd(x2N − 1, sz(x)),

if z = [e, f ] and v = [c, d].
So, in this case the linear complexities of v and z are equal.

The linear complexity of v obtained from Legendre sequences
was considered in Theorems 3. Hence, the first statement of
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Theorem 12 follows from Theorem 3. Other assertions of
Theorem 12 may be proved similarly.

The results of computing the linear complexity
by Berlekamp-Massey algorithm when p =
3, 7, 11, 19, 23, 31, 43, 127, 283, . . . confirm Theorem 12.

V. THE LINEAR COMPLEXITY OF KIM ET AL. SEQUENCES

In conclusion we consider the sequences proposed in [12].
Let l

′
, l be Legendre sequences, and let

qi =

{
l
′

i, if i ≡ 0(mod2),

li, if i ≡ 1(mod2).

ri =

{
l
′

i, if i ≡ 0(mod2),

li + 1, if i ≡ 1(mod2).
(14)

Then the sequence u : ui = φ−1(qi, ri) is a balanced
quaternary sequence with optimal autocorrelation values [12].
In [12] the linear complexity of {yi} was investigated over
finite fields of other orders.

Lemma 13: Let q, r be defined by (14). Then:
(i) sq(x) = (1 + xp)sl(x) + 1;
(ii) sr(x) = (1 + xp)sl(x) + 1 + x(x2p − 1)/(x2 − 1).

We prove Lemma 13 similarly as Lemma 10.
Theorem 14: Let sequence y = [q, r], and q, r be defined

by (14). Then LC = 2p and m(x) = x2p − 1.
Proof: By Lemma 1 sy(x) = µsq(x)+sr(x) hence from

Lemma 11 we obtain

sy(x) = (1+xN )(µ+1)sl(x)+µ+1+x(x2p−1)/(x2−1).

From this we can establish that sy(1) = µ and sy(α
j) =

µ+ 1 for j = 1, . . . , p− 1 or gcd(x2N − 1, sv(x)) = 1. The
conclusion of this theorem follows from (2).

VI. CONCLUSION

We examined the linear complexity and the minimal poly-
nomial of sequences over the finite field of order four. These
sequences were constructed by the inverse Gray mapping from
Legendre sequences, Hall’ sextic sequences and twin-prime
sequences using the technique proposed by Tang, Ding, Lim,
Kim et al.

January 5, 2015
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